

INTRODUCTION TO HIV PATHOPHYSIOLOGY

ROGER PAREDES MD, PHD

INFECTIOUS DISEASES SERVICE & IRSICAIXA AIDS RESEARCH INSTITUTE HOSPITAL UNIVERSITARI GERMANS TRIAS I PUJOL

BADALONA, CATALONIA, SPAIN

DISCLOSURES

- I have received research grants from MSD, ViiV and Gilead
- I have participated in advisory boards for MSD and ViiV
- I don't have stock options

s Recent: 0 - 6 months

Main symptoms of **Acute HIV infection**

Life Expectancy for 20-Year-Old Newly Diagnosed with HIV, 1980s and Today

1980s
(no ART)1-2 years from
AIDS diagnosis

Today (on ART) ~53 years

Source: JL Marcus et al., JAIDS, 2016.

HIV LIFE CYCLE AND ART

VIRAL LOAD FOLLOWING TREATMENT INTERRUPTION

• N=8

• ART started at Fiebig I (HIV RNA+, p24 Ag-, Ab-) for ≥ 96 w.

• VL <50 c/mL ≥48 w & CD4 >400 cells.

• Resume ART if two VL >1000 c/ml or two CD4 <350 cells.

• TI for 24 w. VL every 3-7 days.

Hypothesis.

• At least 30% of individuals will have delayed time to VL rebound (VL<50 at 24 w).

 Proceed to stage 2 if ≥ 1 person has VL <50 c/ml at week 12.

Median time to viral rebound: 26 days (range 13-48) Highest VL at rebound (median): 5169 (2005 – 13462)

HIV is the greatest escapist

HIV-1 Strategies to counteract host immunity

HUGE GENETIC DIVERSITY

Population level

Sanger sequencing

Balance between mutation rate, drift and selection

- 1. High replication rate: 10^{9.12} new virions/day
- 2. Error-prone polymerase:
 - 1 mutation / 10,000 bp
 - 3-8 recombination events / mutation event
- 3. Cellular mechanisms: MDR1 gene codes for Pglycoprotein
- 4. Role of RNAseH
- 5. Selective pressure of Abs & CTLs against HIV epitopes
- 6. Viral pool size and availability of target cells

QUASISPECIES

"A population of viruses that share a common origin but which have distinct genomic sequences as a result from mutation, drift and the impact of selection" In ARV-naïve subjects chronically infected with a "wild-type" HIV-1

- All non-deletereous single mutants likely preexist
- Few double mutants preexist
- Almost no triple mutants are expected.

••

DIVERSITY

Drift

HLA-I molecules are a major driving force of HIV-1 evolution

Kiepiela et al, Nature 2004

CD8+ T-cell responses and HIV-1 escape

HLA class I alleles are also highly diverse

Host HLA genetics and HIV diversity: frequent transmission of escaped epitopes and epitope loss over time

JOURNAL OF VIROLOGY, Aug. 2004, p. 8437-8445 0022-538X/04/\$08.00+0 DOI: 10.1128/JVI.78.16.8437-8445.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. Vol. 78, No. 16

Frequent Transmission of Cytotoxic-T-Lymphocyte Escape Mutants of Human Immunodeficiency Virus Type 1 in the Highly HLA-A24-Positive Japanese Population

Tae Furutsuki,^{1,2}† Noriaki Hosoya,¹† Ai Kawana-Tachikawa,¹† Mariko Tomizawa,¹ Takashi Odawara,³ Mieko Goto,1 Yoshihiro Kitamura,1 Tetsuya Nakamura,3 Anthony D. Kelleher,4 David A. Cooper,4 and Aikichi Iwamoto1,3*

Division of Infectious Diseases, Advanced Clinical Research Center, Department of Infectious Diseases and Applied Immunology, Research Hospital,1 and Institute of Medical Science,3 University of Tokyo, Minato-ku, Tokyo 108-8639, and Department of Applied Biochemistry, Tokai University, Hiratsuka-shi, Kanagawa,2 Japan, and National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, Australia⁴

A24-positive Japanese hemophiliacs				A24-negative Japanese hemophiliacs			
-	flanking	CTL epitope	flanking		flanking	CTL epitope	flanking
Patient ID	WQNYTFGFGI	RYPLTFGWCF	KLVPVEPEKV	Patient ID	WONYTPGPGI	RYPLTFGWCF	KLVPVEPEKV
A24-J041	y	-F	M	NA24-J037			*********
A24-J033	ET	- FY	D	NA24-J035			M
A24-J031	-H T	-F		NA24-J031			G/E-V/1
A24-J030	T	-FC		NA24-J041			D2
A24-J034	T	-F	DQ-Q-	NA24-J032			M
A24-J038		C	D-D	NA24-J030	SV	C	
A24-J005	-D/ET	- P		NA24-J040			Ī
A24-J029	V/T	- y	0-	NA24-J033			-1./V
A24-J037	CT	- F	D	NA24-J029	-H		
A24-J035	T	-F		NA24-J034			V/1
A24-J036	CT	- F		NA24-J039		C	D-D
				NA24-J006	V	c	D

A24-positive Japanese infected through USI A24-negative Japanese infected through USI flanking CTL epitope flanking Patient ID WQNYTPGPG A24-J006 RYPLTFGWCF KLVPVEPBKV A24-J007 ----T -F--C--------B----B-A24-J009 ------F-----A24-J010 ----OR A24-J012 ------P---------D--A24-J013 ----T -F---------D-DO-A24-J016 - D-----V ----C--------DQD--A24-J017 - D- - - - - - T -F--C----A24-J018 ------F-----A24-J023 - F - - - - - - - - -----GEA A24-J021 ----D-DD-A24-J024 ----D-D-A24-J025 -D----T -P---------D0D0-····· A24-J026 -F---------KQ-

		flanking	CTL epitope	flanking
	Patient ID	WONYTPGPGI	RYPLTFGWCF	KLVPVEPEKV
-	NA24-J025	-HV	C	D-D/A0
	NA24-J023*	T	-Y/W/F	ī
	NA24-J021			NO-
	NA24-J018	T	-Y/FC	
	NA24-J017*	T	-Y/F	L
	NA24-J016	V		Q-
	NA24-J015	T	- F	D-DQ-
	NA24-J012	-H/QST		D-DO-
	NA24-J011	T	- F	NQ-
	NA24-J010	-		-
	NA24-J009	T	- F	NQ-
	NA24-J008	-DT	- F	LO-
	NA24-J007	T	-F	NQ-
	NA24-J005	-G/DT	-F	DQDQ-
	NA24-J003	-H		DQ
	NA24-J002	-0/HG		D-DO-

24-positive Australian infected through USI				A24-negative
•	flanking	CTL epitope	flanking	
Patient ID	WQNYTPGPGI	RYPLTFGWCF	KLVPVEPEKV	Patient ID
A24-A001	T	-P		NA24-A007
A24-A002	T	- F	M	NA24-A005
				NA24-A013
				ND24-3008

24-negative Australian infected through USI			
-	flanking	CTL epitope	flanking
Patient ID	WONYTPGPGI	RYPLTFGWCF	KLVPVEPEKV
NA24-A007	V		-
NA24-A005	V		• • • • • • • • • • • •
NA24-A013			
NA24-A008	-H		M-P/Q
NA24-A003	-H		D-D
NA24-A006		C	E~

Microbiol Immunol 2010; 54: 196-205 doi:10.1111/j.1348-0421.2010.00206.x

ORIGINAL ARTICLE

Changes in impact of HLA class I allele expression on HIV-1 plasma virus loads at a population level over time

Michiko Koga¹, Ai Kawana-Tachikawa¹, David Heckerman², Takashi Odawara¹, Hitomi Nakamura¹, Tomohiko Koibuchi³, Takeshi Fujij³, Toshiyuki Miura⁴ and Aikichi Iwamoto^{1,5,6}

¹Division of Infectious Disease, Advanced Clinical Research Center, ³Department of Infectious Diseases and Applied Immunology, Research Hospital, ⁴Department of Infectious Disease Control, International Research Center for Infectious Diseases, ⁵Department of infectious Disease and Applied Immunology, and ⁶Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan and ²Microsoft Research, Redmond, Washington 98052

Broadly Neutralizing Antibodies Binding to Neutralization Epitopes on HIV Trimer

Courtesy of John Mascola

GP160 FROM THE OUTSIDE

RESTRICTION FACTORS

HOST RACE HIV EVOLUTION

QUASISPECIES AS A SURVIVAL STRATEGY

Metzner K, Paredes R, CHAIN Training slides

HIV INFECTION DAMAGES THE GALT

Brenchley J M et al. J Exp Med 2004;200:749-759

MICROBIAL TRANSLOCATION IN HIV

MICROBIAL TRANSLOCATION IN HIV PATHOGENESIS

Bacterial translocation and clinical progression

AIDS. 2011 Jul 17;25(11):1385-94.

Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count. <u>Marchetti G, Cozzi-Lepri A, Merlini E, Bellistri GM, Castagna A, Galli M, Verucchi G, Antinori A, Costantini A, Giacometti A, di Caro A, D'arminio Monforte A; ICONA Foundation</u> <u>Study Group</u>.

ICONA Cohort

- Documented last HIV-negative test and first HIV-positive
- Plasma sample stored while ART-naive N=379.

Circulating LPS in the first year of infection is a good predictor of progression

INFLAMMAEGING

MICROBIOME IN HIV

a Gene richness

Guillén et al. Mucosal Immunology 2018

DYSBIOSIS BY GENE RICHNESS

Guillén et al. Mucosal Immunology 2018

LOW MICROBIAL GENE RICHNESS LINKED TO NADIR CD4

MICROBIOME IN HIV

Guillén et al. Mucosal Immunology 2018

MICROBIOME IN HIV

Guillén et al. Mucosal Immunology 2018

VAGINAL DYSBIOSIS RECOGNIZABLE AS COMMUNITY-TYPES

Anahtar et al., Immunity, 2015

Young women in SA have high vaginal microbial diversity

CAPRISA-004

CAPRISA-004

	Lactobacillus dominant		non- Lactobacillus dominant	
	Tenofovir	Placebo	Tenofovir	Placebo
# HIV-1 infections	9	22	14	17
HIV-1 incidence per 100 person-years	2.7	6.9	6.4	7.8
HIV-1 protection effectiveness	61%		18%	
95% CI, <i>P</i> -value	(11, 84), <i>p</i> =0.013		(-77, 63), <i>p</i> =0.644	

TDF DEPLETED BY GARDENERELLA BUT NOT LACTOBACILLUS

G. vag vs Abiotic: *P*<0.0001 G. vag vs. L. iners: *P*=0.0037 G. vag vs. L. crisp: *P*=0.0019 L. iners vs L. crisp: *P*=ns

24 hours:

G. vag vs Abiotic: *P*<0.0001 G. vag vs. L. iners: *P*<0.0001 G. vag vs. L. crisp: *P*<0.0001 L. iners vs. L. crisp: *P*=ns

4 hours:

G. vag vs. L. iners: *P*<0.0001 G. vag vs. L. crispatus: *P*<0.0001 L. iners vs. L. crispaturs: *P*=ns

24 hours:

G. vag vs. L. iners: *P*<0.0001 G. vag vs. L. crispatus: *P*<0.0001 L. iners vs. L. crispaturs: *P*=ns

TDF METABOLISED TO ADENINE

4 hours:	24 hours:	4 hours:	24 hours:
G. vag vs Abiotic: P<0.0001	G. vag vs Abiotic: P<0.0001	G. vag vs Abiotic: P=ns	G. vag vs Abiotic: P=ns
G. vag vs. L. iners: P<0.0001	G. vag vs. L. iners: P<0.0001	G. vag vs. L. iners: P=ns	G. vag vs. L. iners: P=ns
G. vag vs. L. crispatus: P<0.0001	G. vag vs. L. crispatus: P<0.0001	G. vag vs. L. crispatus: P=ns	G. vag vs. L. crispatus: P=ns
L. iners vs. L. crispatus: P=0.02	L. iners vs. L. crispatus: <i>P</i> =ns	L. iners vs. L. crispatus: <i>P</i> =ns	L. iners vs. L. crispatus: P=ns

MULTIPLE BV BACTERIA (BUT NOT LACTOBACILLUS) CAN METABOLIZE TENOFOVIR

24 hours:

P. amnii vs Abiotic (NYCIII): *P*=0.0007 P. bivia vs Abiotic (NYCIII): *P*=0.0007 M. mulierus vs Abiotic (NYCIII): *P*=0.0007 E. coli vs Abiotic (TS): *P*=0.1000

EXTENSIVE IMPACT OF NON-ANTIBIOTIC DRUGS ON HUMAN GUT BACTERIA

Maier Nature 2018

MICROBIOME IN CANCER

TROPISM PREDICTION

TROPISM

Koot M, et al: Prognostic Value of HIV-1 Syncytium-Inducing Phenotype for Rate of CD4+ Cell Depletion and Progression to AIDS. Annals Int Med 1993

RATE OF PROGRESSION TO CD4+<350, INITIATION OF ART OR DEATH

Goetz. JAIDS 2009

TIME OF X4 VIRUS EMERGENCE IN RELATION TO CD4 INFLECTION POINT

TROPISM & CD4 LOSS BEFORE ART

Waters CID 2008

TROPISM & CD4 GAIN AFTER ART

Waters CID 2008

WHY DO WE NEED TO CURE HIV?

- Life expectancy remains reduced on cART
- Ongoing morbidity on cART
- Prevent HIV transmission
- Substantial stigma and discrimination
- Lifelong cART:
 - adherence
 - toxicity
 - long term-cost

Estimated **2015** AIDS investment for universal prevention, treatment, care and support

22 billion USD

BARRIERS TO CURE HIV INFECTION

Where is the virus and how is it maintained in the face of suppressive therapy?

HIV CURE: 2-MODELS

Eradication	Remission	
Sterilizing cure	Functional cure	
Elimination of all HIV- infected cells	Long-term health without cART	
HIV RNA < 1 cop/mL	HIV RNA <50 cop/mL	
Berlin Patient post-BMT	Elite controllers Post-cART controllers	

STRATEGIES TO CURE HIV

J.Martinez-Picado

ICISTEM CONSORTIUM

International collaboration to guide and investigate the potential for HIV cure in HIV-infected patients requiring allogeneic stem cell transplantation for hematological disorders

AIM 1

To guide clinicians involved in allogeneic SCT procedures in HIV infected individuals

Principal Investigators:

Javier Martinez Picado Annemarie Wensing

www.icistem.org

AIM 2

To better understand the underlying biological processes leading to viral reservoir reduction and potential cases of HIV-1 eradication/remission.

Current Status

40 individuals transplanted. ATI in 2 who received CCR5Δ32 cells (sep 2017 and nov 2018) without viral rebound. ATI with intervention for 5 individuals transplanted with wildtype cells is being prepared

CONCLUSIONS

- HIV is the great scapist
 - -Diversity
 - HIV
 - HLA
 - -Integrated DNA
 - -Env glycosylation
 - -GALT damage
 - -Inflammaging

