Neurocognitive Testing

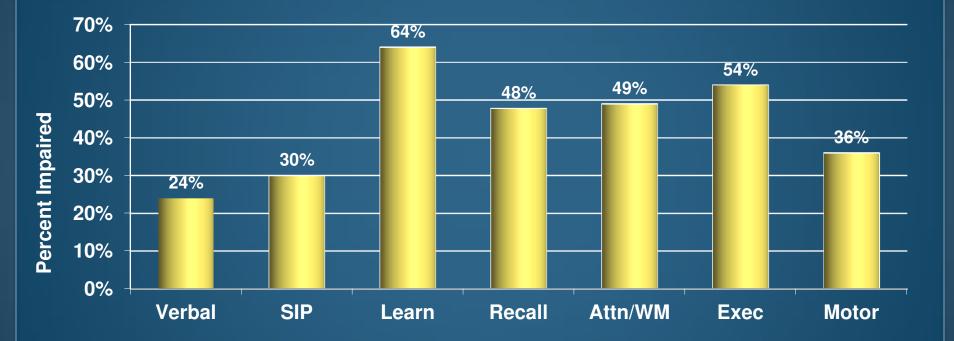
Thomas D. Marcotte, Ph.D. Associate Professor of Psychiatry UCSD School of Medicine

www.hnrp.ucsd.edu

Why Use Neuropsychological Testing?

- HIV-associated neurocognitive disorders (HAND) remain prevalent (30-50%), even in the modern cART era (Heaton et al., 2010)
- Cognitive deficits are more frequently in the mild range
- Unlike HIV-associated dementia (HAD), not readily detectable during a routine clinical evaluation
- Patient self-report of cognitive problems can be affected by mood and lack of insight

Why Use Neuropsychological Testing?


Neuropsychological testing

- Assess many aspects of cognition, important given the "spotty" nature of HAND
- Estimate as to whether there has been a decline, or improvement, in cognitive functioning

Impairment by Cognitive Domain (CART era)

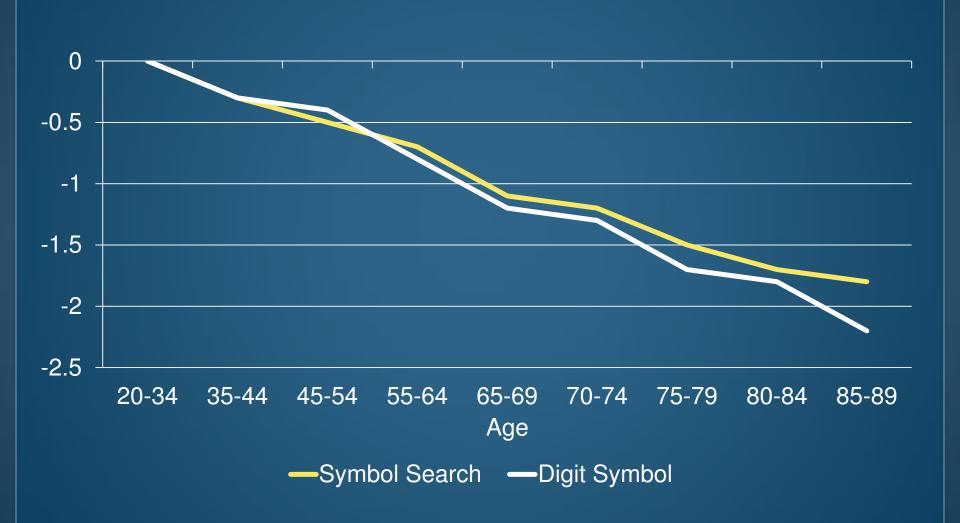
Heaton et al. (2011)

Why Use Neuropsychological Test Norms?

- Need a method to estimate at what level the patient <u>should</u> be performing; has there been a decline from previous levels of functioning?
- We rarely have cognitive test results from pre-infection

Demographically Adjusted T-scores

Cognitive functioning is often associated with


- » age
- » education
- » gender
- » race/ethnicity

Use this information to estimate the predicted score

Age Effects on WAIS-III Digit Symbol and Symbol Search (education-corrected, referenced to the 20-34 group)

Demographically adjusted T-scores

Use normative age, education and gender data to determine

- » Expected/predicted (meant T score of 50, s.d. of 10), vs.
- » Observed (actual T score)

to estimate whether there has likely a decline from premorbid levels

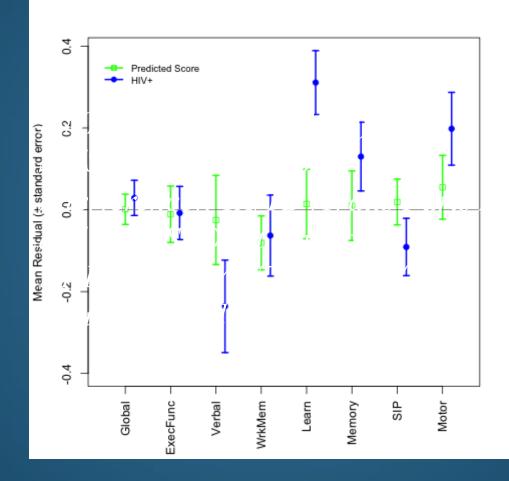
Monitoring Cognition over Time

Neuropsychological testing can be used to track changes

but...

Follow-up scores are influenced by

- » Baseline performance
 - On the specific test
 - Overall cognitive competence
 - Demographics (occasionally)


Change scores and norms for change (Cysique et al., 2011)

» Is the amount of improvement less than would be expected?

Global and domain-specific change at one year for individuals in India starting ART at CD4 < 200

Ghate et al., 2015

Cross-Cultural Neuropsychology: Challenges of Test Translation

- Multiple languages, dialects, lack of words/familiarity for objects (rhino)
- Approach
 - » Translated by expert with knowledge of culture, language, and NP
 - » Backtranslation into English to confirm meaning is retained
 - » Additional review by other bilinguals (e.g., not all highly-educated)
 - » Pretest on a pilot group and adjust as necessary

Cross-Cultural Neuropsychology: Challenges of Test Interpretation

- Interpretation more challenging than test administration
 - » Cultures may vary in emphasis placed on development of certain abilities (e.g., speed vs. accuracy)
 - » Variance in years of education
 - Access
 - Quality
 - » Level of literacy, test-wiseness

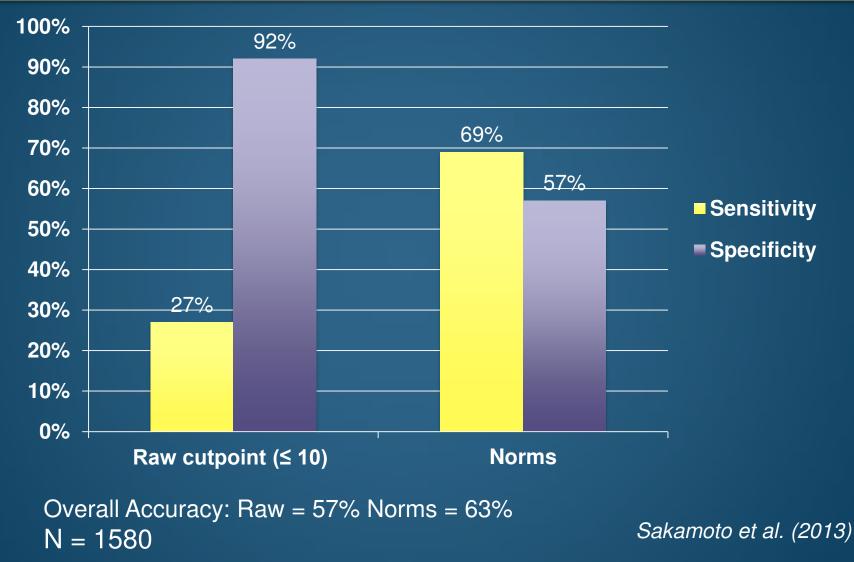
 Appropriate norms should be obtained to accurately classify individuals

Cross-Cultural Neuropsychology: Determining Impact on Everyday Functioning (EDF)

- Mostly self-report inventories (often biased)
- Should be specific for populations of interest
 - Elderly Thai (Senanarong et al., 2003): hiring a taxi-boat, bicycling, walking to the village
 - » Rural elderly Indian population (Fillenbaum et al., 1999): remember important local festivals, holiday rituals
- Development of performance-based measures

Cognitive Screens

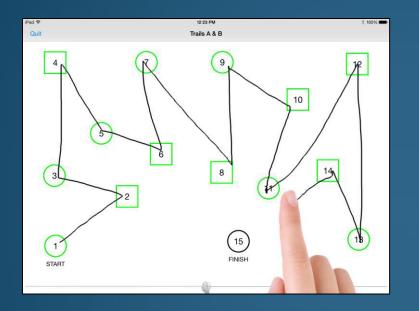
- Goal: brief but sensitive to HAND (spotty presentation)
- Many have been proposed
 - » HIV Dementia Scale (HDS), International HIV Dementia Scale (IHDS), Montreal Cognitive Assessment (MoCA), CogState, Computerized Assessment of Mild Cognitive Impairment (CAMCI), Cognistat, NIH toolbox

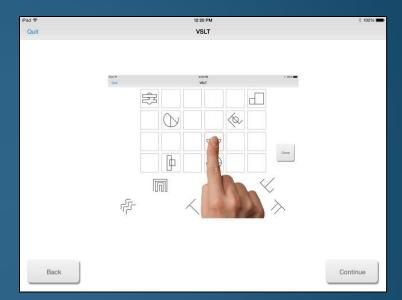

Limitations

- » Lack of sensitivity to mild impairments (false positives)
- » Difficult to balance sensitivity and specificity
- » No normative adjustments

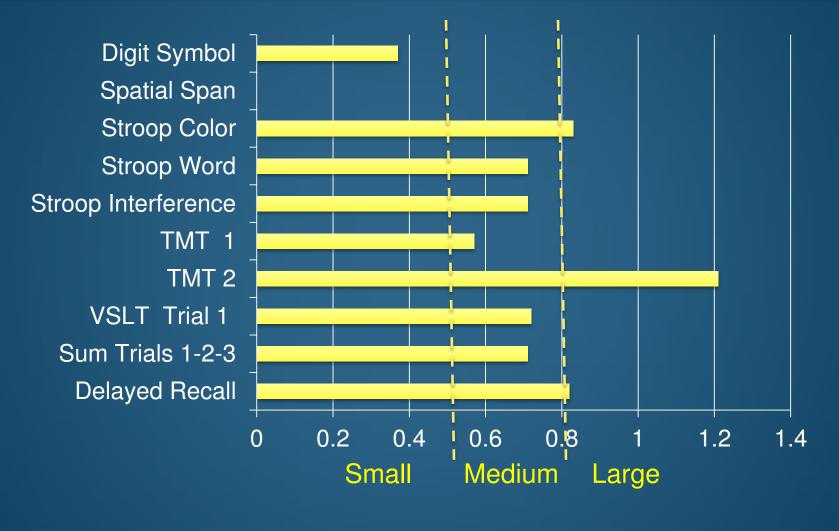
Classification Accuracy of the HIV Dementia Scale (HDS)

New UCSD iPad Brief Screen Project

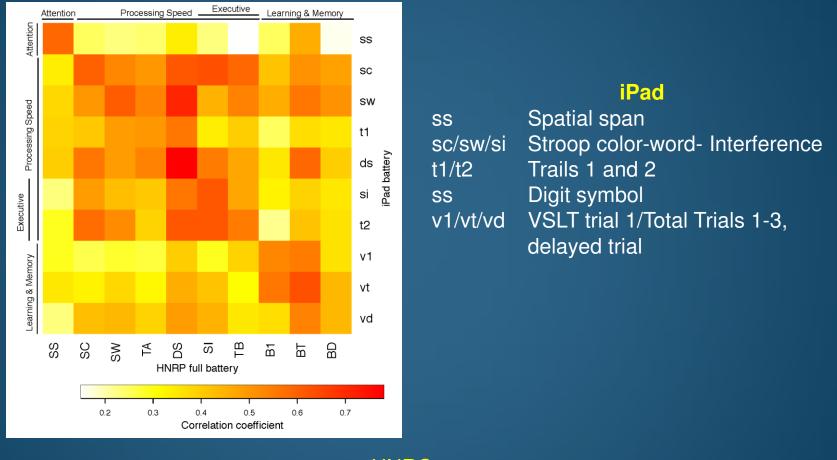

Goals


- » Brief tool
- » Intuitive (using touchscreen interface)
- » Self-administered
- » Assesses multiple cognitive domains
- » Automated scoring and data aggregation
- » Uses locally-generated norms
- » Real-time preliminary determination of cognitive impairment

Sample instruction screens from iPad brief cognitive screen



Effect sizes between HIV+ impaired and unimpaired participants



Effect Sizes

Correlations between iPad tests and similar full neuropsychologal paper-and-pencil tests

HNRC SC/SW/SI Stroop Color/Word/Interference B1/BT/BD BVMT-R Trial 1/Total Trials 1-3, Delay Trial

SS

DS

Spatial Span

Digit Symbol

Classification Accuracy: Recursive Partitioning with 5-fold Cross-validaton

Six-Minute Screen:

1. Stroop Color (Processing Speed)

2. VSLT Trial 1 (Visual Learning)

3. Trailmaking I (Processing Speed)4. Trailmaking II (Executive Functioning)

Predicted

		Impaired	Normal	
	Impaired	13	4	17
	Normal	<u>3</u>	<u>16</u>	<u>19</u>
		16	20	36
	Sensitivity	13/17	76.5%	
	Specificity	16/19	84.2%	
	PPV	13/16	81.2%	
	NPV	17/29	80.0%	

Summary

- NP testing provides an important method for the baseline determination of HAND, as well as tracking of cognitive change
- Adapting current cognitive measures to new regions involves careful consideration of both <u>translation</u> and <u>interpretation</u>
- The search for an effective cognitive screen continues; new technologies may provide enhanced methods for clinic-based screening

Neurocognitive Testing

Thomas D. Marcotte, Ph.D. Associate Professor of Psychiatry UCSD School of Medicine

www.hnrp.ucsd.edu

